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Abstract—Distributed Denial of Service (DDoS) attacks pose a
major threat to network security by overwhelming systems with
excessive traffic, causing severe disruptions. As attacks increase
in scale and complexity, traditional detection methods struggle to
maintain effectiveness. This paper explores statistical techniques
for DDoS detection, focusing on the Gini Index and comparing
it with the Entropy-based approach. The proposed framework
leverages the Gini Index for real-time anomaly detection, ensur-
ing high precision and low latency. A comparative analysis with
the Entropy-based approach evaluates the detection accuracy,
response time, and computational efficiency. Enhancements such
as adaptive thresholds and flow aggregation improve scalability
in high-speed networks. By integrating insights from Gini Index
and Entropy-based detection, this paper presents an efficient and
adaptable solution for modern network security, emphasizing
detection speed and computational efficiency. The findings serve
as a foundation for future advancements in DDoS mitigation.

Index Terms—DDoS Detection, Entropy-based approach, Gini
Index, Network Security, Cybersecurity

I. INTRODUCTION

As digital infrastructure continues to grow rapidly, ensuring
strong and scalable network security is more important than
ever. Among various cyber threats [1], Distributed Denial of
Service (DDoS) [2] attacks remain among the most disruptive.
These attacks flood servers or networks with excessive, ma-
licious traffic, causing service outages, financial losses, and
reputational harm. To ensure consistent service availability,
deploying reliable and real-time DDoS detection mechanisms
is essential.

Over time, several detection techniques have been proposed,
each with its advantages and limitations. Signature-Based
Approaches (SBA) [3] detect known attack patterns with
high accuracy but fail to recognize zero-day or previously
unseen threats [4]. Anomaly-Based Approaches (ABA) [5]
detect unusual traffic behavior but often suffer from high false
positives [6], especially in dynamic conditions.

Entropy-Based Approaches (EBA) are effective for identify-
ing volumetric DDoS attacks by analyzing entropy fluctuations
in traffic. However, they face scalability issues in high-speed
networks. Machine Learning-Based Approaches (MLBA) [7]
offer adaptability through learning from traffic behavior, but
they require large training datasets and significant compu-
tational power. Other methods, such as Gini Index-Based
Approaches (GIBA) [8], CAPTCHA-Based techniques [9],
and Challenge-Response mechanisms, also offer alternatives,
though GIBA remains relatively underexplored.

Despite these advancements, few studies have compared
these techniques across critical performance metrics like com-
putation speed, detection accuracy, scalability, resource effi-

ciency, and false positives. While EBA has shown effectiveness
against volumetric attacks [10], more comparative analysis
with GIBA, MLBA, and newer hybrid approaches is needed.

Fig. 1. How DDoS Attack Works

This study addresses these gaps by comparing EBA and
GIBA using Mininet-based simulations. It evaluates both
techniques across essential metrics, including detection ac-
curacy, computational speed, resource usage, and real-time
monitoring. By identifying their strengths and limitations, the
study supports the development of scalable and efficient DDoS
detection systems [11].

As digital networks become integral to modern infrastruc-
ture, the risk posed by advanced DDoS attacks increases [12].
Effective detection is crucial for preserving service availability
in high-speed environments. EBA is responsive but challenged
by computational overhead; MLBA is flexible but resource-
intensive; and GIBA shows lightweight potential, though fur-
ther evaluation is needed.

II. LITERATURE REVIEW

Numerous DDoS detection techniques have been devel-
oped, each addressing specific challenges and offering distinct
strengths and limitations.

Signature-based Approaches (SBA): SBA matches traffic
patterns to known signatures, proving effective against familiar
threats but ineffective for zero-day attacks [13]. Anomaly-
based Approaches (ABA): ABA detects deviations from nor-
mal traffic behavior, identifying new threats but often produc-
ing false positives and requiring high computation. Entropy-
based Approaches (EBA): EBA analyzes randomness in traffic
for real-time detection [14], but suffers from scalability and



Fig. 2. Prevention of DDoS attack types

computational overhead [15]. Gini-Index-based Approaches
(GIBA): GIBA detects anomalies using traffic inequality [16],
but its comparative performance is not well-studied. Machine
Learning-based Approaches (MLBA): MLBA classifies traffic
using trained models, offering adaptability to evolving threats
but requiring large datasets and significant resources. Other
Techniques: Hybrid statistical methods [17], CAPTCHA-based
defenses, and Challenge-Response tests can enhance accuracy
but may increase latency and affect usability.

Most studies focus on individual techniques, with few
comprehensive evaluations across performance metrics like
detection accuracy, false positives, scalability, and resource
efficiency. SBA struggles with zero-day threats, ABA with
false alarms, EBA with high-speed environments, and GIBA
lacks comparative validation.

Research into adaptive thresholding [18], fast Entropy cal-
culations [19], and hybrid Machine Learning solutions is
ongoing. This study contributes by systematically comparing
EBA and GIBA under dynamic traffic conditions to assess
their strengths and limitations.

A. Gaps and Limitations in Existing Research

• Limited Comparative Studies: Few studies have compared
Entropy-based Approaches (EBA) and Gini-Index-based
Approaches (GIBA) under dynamic network conditions,
leading to limited insight into their real-world effective-
ness [20].

• Underexplored GIBA: GIBA’s potential for detecting
subtle anomalies, scaling in high-speed networks, and
adapting to varied environments remains underexplored.

• Real-Time Detection Challenges: EBA faces computa-
tional constraints that hinder real-time deployment. The
absence of adaptive thresholding reduces its responsive-
ness to traffic changes.

• Lack of Optimization: Optimization techniques for im-
proving detection speed and accuracy are insufficiently
studied, limiting scalability.

• Insufficient Practical Validation: Much of the existing
research is theoretical. More empirical studies are needed
to validate these methods in real network settings.

Addressing these limitations is vital for advancing DDoS
detection. This research aims to bridge these gaps by compar-
ing EBA and GIBA, introducing optimization strategies, and
validating results through simulation.

III. PROPOSED WORK

This research focuses on the comparative analysis and im-
plementation of Distributed Denial of Service (DDoS) detec-
tion techniques, with a particular emphasis on the Gini Index-
based method alongside Entropy-Based Approaches (EBA).
The proposed work involves building a real-time DDoS detec-
tion system using the Gini Index, tested through traffic simula-
tion in Mininet. The goal is to evaluate detection performance,
scalability, and adaptability under various network conditions.
By comparing Gini and Entropy-based methods, this study
highlights their individual strengths, limitations, and suitability
for high-speed, large-scale networks.

The Gini Index-based method is assessed against EBA
across several key aspects. Detection accuracy is compared
by analyzing true and false positive rates. Computation speed
is evaluated through latency and responsiveness. Adaptability
considers how each method handles evolving attack patterns.
Ease of implementation reflects deployment complexity and
practicality. Real-time monitoring examines continuous traf-
fic analysis efficiency. Resource use involves memory and
processing overhead. Scalability is measured under different
traffic loads. Lastly, robustness against false positives is judged
by how accurately each method identifies real attacks while
reducing false alerts.

By analyzing, optimizing, and validating these detection
mechanisms, this research aims to improve DDoS defense
strategies and support the development of efficient, real-time
protection systems.



IV. IMPLEMENTATIONS

The DDoS detection system integrates Entropy-based and
Gini index-based techniques within a Linux environment us-
ing a Software-Defined Networking (SDN) architecture. This
setup allows for flexible traffic control, real-time monitoring,
and adaptive mitigation. The main objective is to evaluate
and compare the computational efficiency, detection accuracy,
responsiveness, and adaptability of both techniques under
different traffic conditions in a controlled and reproducible
testbed.

A. Tools and Technologies

Several tools and technologies were used to build and test
the system. Mininet was employed to emulate a virtual SDN
network with configurable hosts, switches, and links. sFlow-
RT provided real-time flow analytics and computed both
Entropy and Gini Index values for traffic monitoring. Python
was used for scripting traffic behavior, processing collected
data, and visualizing trends. The POX Controller managed
flow entries, handled detection logic, and enforced mitigation
rules. iperf generated both normal and attack traffic streams
to simulate realistic scenarios, while Wireshark was used for
packet-level inspection and to verify the correctness of the
traffic flows and detection results.

B. Network Setup

The virtual network topology created by Mininet consisted
of multiple hosts connected to a single SDN-enabled switch,
which was controlled by the POX controller. This architecture
enabled precise control over the flow of traffic and supported
the simulation of diverse attack scenarios. Normal and mali-
cious hosts were configured to test detection sensitivity and
reaction accuracy (see Figure 3).

Fig. 3. Host Setup for DDoS Detection in an SDN Environment

C. Traffic Simulation and Baseline Metrics

To establish baseline behavior, UDP traffic was generated
using iperf. During normal traffic conditions, the entropy
values remained around ±1.5, while the Gini Index stayed
close to 0.5, indicating well-distributed and stable traffic flows.
These metrics served as reference thresholds for detecting
anomalies (Figure 4).

Fig. 4. Connecting Hosts for Traffic Simulation

D. DDoS Attack Simulation and Detection

In the attack scenario, additional hosts generated high-
volume UDP traffic to simulate a DDoS event. This led to
a noticeable drop in Entropy (below 0.5), reflecting a concen-
tration of traffic from a few sources. Simultaneously, the Gini
Index rose above 0.9, highlighting the unequal distribution
of traffic. These shifts indicated a clear deviation from the
baseline and successfully triggered the detection mechanism
(Figure 5).

Fig. 5. Impact of DDoS Attack on Entropy and Gini Index

E. DDoS Mitigation and Response

Upon detecting the attack, the POX controller dynamically
applied mitigation policies to block malicious sources by
modifying the flow rules on the switch. This action restored the
network to stable operation and ensured uninterrupted service
for legitimate users. The effectiveness of this response was
validated through real-time monitoring and packet analysis
(Figure 6).

V. RESULTS AND DISCUSSIONS

Efficient computational performance is essential for real-
time DDoS detection. Figure 7 shows that the Entropy-based
method consistently detects DDoS attacks faster than the
Gini Index, with lower computational overhead. Entropy’s



Fig. 6. DDoS Detection and Automated Mitigation in SDN

lightweight calculations make it well-suited for real-time ap-
plications, while the Gini Index introduces higher latency.

• Entropy-based detection enables faster processing, reduc-
ing latency and improving mitigation speed.

• The Gini Index offers greater granularity in specific attack
patterns, especially in precise traffic distribution shifts.

• Entropy adapts more effectively to dynamic traffic,
whereas the Gini Index struggles with frequent fluctu-
ations.

• Entropy yields lower false positive rates, distinguishing
traffic surges from attacks better than the Gini Index,
which shows a slightly higher rate under congestion.

These findings highlight Entropy-based detection’s strengths
in minimizing latency and computational overhead, making it
ideal for high-speed networks where timely response is crucial.

A. Comparison of Detection Techniques

The following summary compares both detection methods
across key performance metrics:

• Computation Speed: Entropy offers faster response due
to simpler calculations, while the Gini Index introduces
more latency, reducing its real-time efficiency.

• Detection Accuracy: Both methods achieve high accu-
racy, but Entropy performs better in detecting volumetric
attacks due to its sensitivity to traffic variation.

• Adaptability: Entropy is more adaptive to changing traffic
conditions, while the Gini Index is less effective under
variable patterns.

• Ease of Implementation: Entropy is easier to integrate
and requires fewer resources, whereas the Gini Index is
more complex and computationally heavier.

• Real-Time Monitoring: With lower overhead, Entropy
supports continuous monitoring, while the Gini Index
may introduce delays due to processing demands.

• False Positives: Entropy better distinguishes between
normal traffic changes and attacks, reducing false alerts
more effectively than the Gini index.

Table I summarizes the key differences between the
Entropy-based and Gini Index-based detection techniques,
reinforcing the advantages and limitations of each approach.

TABLE I
COMPARISON OF ENTROPY-BASED AND GINI INDEX-BASED DETECTION

Aspect Detection Method

Entropy-based Gini Index-based

Computation
Speed

Fast, real-time detection. Slower, higher latency.

Detection Ac-
curacy

High, effective for volu-
metric attacks.

High, but less effective for
extreme cases.

Adaptability Adapts well to dynamic
traffic.

Struggles with traffic vari-
ations.

Ease of Imple-
mentation

Simple, low resources. Complex, needs more re-
sources.

Real-Time
Monitoring
Capability

Excellent real-time detec-
tion.

Moderate, with delays.

Scalability Efficient in large net-
works.

Limited by computation
load.

Robustness
Against False
Positives

Very low. Moderate.

VI. CONCLUSION AND FUTURE SCOPE

This study compared Entropy-based and Gini Index-based
methods for DDoS detection, with Entropy-based detection
showing better results in speed, adaptability, and ease of
implementation. It identified traffic anomalies quickly and was
easier to integrate into real-time systems. While both methods
showed high accuracy, Entropy-based detection proved more
efficient for high-speed networks.

These findings highlight the need to choose detection meth-
ods based on accuracy, resource usage, and response time.
Understanding these trade-offs is key to building scalable and
reliable DDoS detection systems.

Future research can explore advanced Entropy techniques to
make detection faster and more accurate. Developing hybrid
systems that combine Entropy methods with machine learning
can help adapt to new and complex attack patterns. Using
dynamic thresholding may improve detection by adjusting to
different types of network traffic. Testing these methods in
real-world environments will also help improve their reliabil-
ity. Enhancing resilience against advanced threats will make
networks stronger and more secure.
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